
An ab Initio Three-Dimensional Torsion-Torsion-Bending Analysis of the Far Infrared
Spectra of Dimethylamine

M. L. Senent*
Departamento de Quı´mica, Facultad de CyTA y C.Quı´micas, UniVersidad de Burgos, Plaza Misael Ban˜uelos,
Burgos 09001, Spain

Y. G. Smeyers
I. Estructura de la Materia, C.S.I.C., Serrano 123, 28003 Madrid, Spain

D. C. Moule
Department of Chemistry, Brock UniVersity, St. Catharines, Ontario L2S3A1, Canada

ReceiVed: September 29, 1997; In Final Form: May 13, 1998

The frequencies of the three large amplitude modes of dimethylamine (DMA) were analyzed using a three-
dimensional (3D) model, the independent variables of which are the two torsional angles and the CNC
symmetric bending angle. For this purpose, the potential energy surface and the kinetic parameters of the
vibrational Hamiltonian were determined using fully optimized ab initio calculations performed at the MP2/
6-311G(d,p) and MP4/6-311G(d,p) levels on 150 nuclear conformations. The positions of the two first hot
bands were also calculated. The three fundamentals, 255.4, 216.9, and 409.8 cm-1, as determined with the
MP4/6-311G(d,p) approximation, are in a good agreement with the experimental frequencies of 256.3, 219.4,
and 383 cm-1, respectively. Torsional frequencies were compared with those obtained from a previously
published two-dimensional model. The calculations confirm that the 3D model is indispensable for obtaining
accurate band separations for the two different torsional modes.

Introduction

In the most stable structure of the electronic ground state,
dimethylamine (DMA) has a pyramidal geometry and can be
classified according to theCs symmetry point group (see Figure
1). This molecule presents four large amplitude vibration modes
that confer the properties of nonrigidity. These vibrations are
the internal rotation of the methyl groups, the hydrogen inversion
of the amine group, and the CNC bending mode. The two
methyl groups have been found to interact strongly during their
rotation. In addition, the torsions may interact weakly with the
CNC bending mode and with the inversion of the NH hydrogen.

The structures, barriers, and torsional frequencies of DMA
have been considered in many papers.1-14 The most relevant
infrared (IR) and Raman spectra of DMA were recorded by
Durig, Griffin, and Groner in 1977.1 Their assignments are
unusually complex because the two torsional modes a′ and a′′
are active in the IR range. Both sets of transitions lie in the
same region of the spectrum and result in bc-hybrid and a-type
bands. In addition, the CNC bending fundamental band appears
in the same region. The assignment of the transitions involving
these modes requires a theoretical model that is powerful enough
to accurately describe the relative positions of the observed
bands.

In a previous paper,14 we assigned the torsional spectra using
two-dimensional (2D) calculations of the IR band frequencies
and intensities. The spectroscopic parameters were determined
from ab initio calculations at several nuclear conformations. The
remaining coordinates were fully optimized in all the nuclear
conformations to account in some way for the interactions with
the other vibrational modes. This procedure has been employed

for the analysis of the torsional spectra of a large set of nonrigid
molecules; for examples, acetone,15 biacetyl,16 dimethylether,
(DME)17,18dimethylsulfide,19 2-butene derivatives,20 and meth-
ylamine.21 In the case of DMA, the calculations were performed
by using the MP2/RHF approximation and the following
different basis sets: 6-31G(d,p), 6-311G(d,p), and 6-311G(df,p).
A relatively good agreement between the theoretical and
experimental values was achieved.

It may be inferred from this first DMA study14 that the 2D
model adequately describes the relative positions of theυ12 (a′)
fundamental (000f010) and three first sequences (010f020;
020f030; 030f040), and the relative positions of theυ24 (a′′)
fundamental (000f100) and first sequence (100f200) of DMA.
However, the 2D model is not powerful enough to treat the

Figure 1. The molecular structure of dimethylamine, the torsional
anglesθ1 andθ2, and the bending angleâ.
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relative band positions of these different modes. The observed
separation between the two fundamentals is 36.9 cm-1, whereas
the calculated values with this restricted model are 27.5 cm-1

[MP2/6-31G(d,p)], 31.0 cm-1 [MP2/6-311G(d,p)], and 31.6
cm-1 [MP2/6-311G(df,p)].

The same behavior has been observed in DME,17,18 which
has been analyzed in 2D17 and three dimensions (3D).18 As in
DMA, the 2D model does not reproduce the gap between the
bands of the two different modes because the nonbonding
interactions between the hydrogen atoms of the methyl groups
are not explicitly employed. These interactions depend directly
on the value of the COC angle. In 2D, the dependence on the
barrier and the torsional interactions terms on the COC bending
is parametric. In contrast, in 3D, the COC angle is an explicit
coordinate and the dependence of the torsional terms on the
bending is described in analytical form.

As a consequence, a significant improvement in the analysis
of the torsional spectra may be expected by using three variables
because the DMA and DME structures are comparable. The
aim of the present paper is to analyze the torsional spectra of
DMA with a 3D model where the CNC bending is explicitly
considered as a third independent coordinate. The new frequen-
cies are compared with those obtained in our previous paper14

in 2D. Calculations are performed at the MP2/RHF and MP4/
RHF levels using the 6-311G(d,p) basis set on 150 nuclear
conformations. The Smeyers’ formalism of the Group Theory
for Non-Rigid Molecules22,23 is employed to simplify the
variational calculations.

Theory

The 3D vibrational Hamiltonian of DMA may be written as

whereBij(θ1, θ2, â) represents the kinetic energy parameters
andV(θ1, θ2, â) is the 3D potential energy function that can be
defined as the sum of the following three terms:

The first term,V12(θ1, θ2), is a 2D energy function that
depends on the two torsional angles,Vâ(â) is a one-dimensional
(1D) function that depends on the CNC angle, and the last term,
V12â, describes the potential bending-torsion-torsion interac-
tions.

The 3D dynamic model for DMA may be classified by the
restricted nonrigid group22,23(r-NRG) that defines the nonrigid
symmetry operations in terms of internal coordinates. This
r-NRG group is identical to the group of symmetry operations
that commute with the DMA nuclear Hamiltonian when the
molecule is described as a 2D system14 in which the variables
are the torsional angles. Thus, the symmetry properties of the
system remain unmodified by the addition of the bending motion
as a third large amplitude coordinate. The r-NRG G18 group is
defined by the same operations as those used in the 2D study
of DMA. The G18 nonrigid group may be defined as

where

whereC3 represents the 3-fold rotation of each methyl group.
The termWV is simultaneously the double-switch and inter-
change operation and may be defined as

The V12 term of the potential may be developed by using a
symmetry-adapted double Fourier series (i.e., the expansion
coincides with that used in the 2D analysis of DMA):

In this expansion, the first seven terms transform as the totally
symmetric representations of the G18 and the G36 group. The
terms are symmetric with respect to the interchange (W), double
switch (V) and double switch and interchange operations (WV).
The additional three terms arise from the pyramidal nonplanar
structure of DMA and transform as the totally symmetric
representation of the G18 group.

The potential energy function for the CNC bending may be
described by a Taylor series. The maximum of energy
corresponds to the linear structure where CNC> ) 180°.
Because the barrier is extremely high, the lowest vibrational
energy levels may be calculated by considering a single well,
and the potential can be described by a Taylor series depending
on theâ angle whereâ ) ∆(CNC>). â ) 0° corresponds to
the minimum energy structure.

Finally, the torsion-torsion-bending interactions terms are:

The energy levels may be calculated variationally by devel-
oping the solutions on some basis set. For this purpose, the
symmetry eigenvectors, which factorize the Hamiltonian matrix
into blocks according to the irreducible representations of the
G18 r-NRG, are used. These symmetry eigenvectors are
obtained by projection of products of solutions of the double
free rotor and the harmonic oscillator:

H(θ1,θ2,â) ) - ∂

∂θ1
B11

∂

∂θ1
- ∂

∂θ2
B22

∂

∂θ2
- ∂

∂â
B33

∂

∂â
-

∂

∂θ1
B12

∂

∂θ2
- ∂

∂θ2
B12

∂

∂θ1
- ∂

∂θ1
B13

∂

∂â
- ∂

∂â
B13

∂

∂θ1
-

∂

∂θ2
B23

∂

∂â
- ∂

∂â
B23

∂

∂θ2
+ V(θ1,θ2,â) (1)

V(θ1,θ2,â) ) V12(θ1,θ2) + Vâ(â) + V12â(θ1,θ2,â) (2)

G18 ) (C3
I × C3′

I ) Λ (WV)I

C3
I ) [E + C3 + C3

2] (WV)I ) [E + WV]

(WV) f(θ1,θ2,â) ) f(-θ2,-θ1,â)

V12(θ1,θ2) ) A000
cc + ∑

L>K

2

∑
K)0

ALK0
cc (cos 3Lθ1 cos 3Kθ2 +

cos 3Kθ1 cos 3Lθ2) + ∑
K)1

2

AKK0
cc (cos 3Kθ1 cos 3Kθ2) +

A110
ss sin 3θ1 sin 3θ2 + ∑

K)0

2

A1K0
cs (cos 3Kθ1 sin 3θ2 -

sin 3θ1 cos 3Kθ2) (3)

Vâ(â) ) ∑
M)1

N

A00M
cc âM (4)

V12â(θ1,θ2,â) ) ∑
L>K

2

∑
K)L

∑
M)1

N

ALKM
cc âM(cos 3Lθ1 cos 3Kθ2 +

cos 3Kθ1 cos 3Lθ2) + ∑
K)1

2

∑
M)1

N

AKKM
cc âM

(cos 3Kθ1 cos 3Kθ2) + ∑
M)1

N

A11M
ss âM sin 3θ1 sin 3θ2 +

∑
K)0

2

∑
M)1

N

A1KM
cs âM(cos 3Kθ1 sin 3θ2 - sinKθ1 cos 3Kθ2) (5)
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where

where Hγâ represents the Hermite polynomials and

Each symmetry eigenvector is the product of a torsional vector
and a (even or odd) solution of the harmonic oscillator. The
torsional symmetry eigenvectors may be also obtained from the
set defined for the analysis of the acetone internal dynamics.24

The G18 group of DMA is indeed a subgroup of the G36 group.
Two sets of vectors from acetone form a single set of vectors
for a single representation of DMA. In Figure 2, the Hamil-
tonian matrix is factorized in boxes according to the G18 and
G36 representations. In this figure, the correlation between the
representations of these two r-NRG groups is also illustrated.

The G18 group possesses two nondegenerate representations
(A1 and A2) and one two-degenerate (E3) representation. The
representations E1, E2 and the two G components, G1 a G2, are
pseudo-degenerate and each contains two inseparable represen-
tations. The IR and Raman selection rules coincide with those
obtained in the previous 2D analysis of the DMA spectra.14

Computational Details

The 3D potential energy function was determined from the
electronic energies of 150 selected nuclear conformations.
Calculations were performed at the MP2/RHF and the MP4//
MP2 levels by using the Gaussian 92 program.25 All of the
structures were fully optimized at the MP2/RHF levels with
the 6-311G(d,p)(TZ) basis set. In this way, some interactions
with the remaining vibration modes are taken into account.

Symmetry and energy criteria were applied in the selection
of the nuclear conformations for the torsional coordinates (θ1,θ2)
and the bending coordinate (â), respectively. Withθ1′ ) 0°
andθ2′ ) 0°, one of the hydrogen atoms of each methyl group
lies on the CNC plane pointing in the outward direction (see

TABLE 1: Total Energies of Dimethylamine (cm-1)

θ1′ θ2′ â MP2/TZa MP4/TZa θ1′ θ2′ â MP2/TZa MP4/TZa

0 0 0 40.66 41.82 0 0 5 210.85 220.21
60 0 0 1242.97 1203.42 60 0 5 1313.36 1291.86
60 60 0 2574.67 2493.15 60 60 5 2374.05 2326.93
30 0 0 763.86 748.14 30 0 5 829.17 828.48
60 30 0 1681.15 1621.71 60 30 5 1682.78 1644.75
30 30 0 1190.23 1154.73 30 30 5 1272.66 1253.43
30 -30 0 1563.56 1531.08 30 -30 5 1419.59 1413.64
0 30 0 425.66 407.03 0 30 5 603.21 594.28

30 60 0 2066.36 2011.24 30 60 5 1945.04 1919.13
-30 30 0 852.72 815.32 -30 30 5 950.72 925.79

0 0 3 99.92 106.39 0 0 -5 269.15 258.77
60 0 3 1239.14 1210.63 60 0 -5 1605.63 1544.49
60 60 3 2396.36 2336.39 60 60 -5 3329.24 3209.25
30 0 3 758.19 751.10 30 0 -5 1118.08 1082.52
60 30 3 1629.69 1583.25 60 30 -5 2174.31 2089.62
30 30 3 1194.12 1168.56 30 30 -5 1534.01 1478.72
30 -30 3 1426.05 1410.07 30 -30 -5 2189.51 2124.33
0 30 3 487.81 475.25 0 30 -5 662.90 630.48

30 60 3 1942.99 1906.11 30 60 -5 2667.39 2580.02
-30 30 3 860.49 830.15 -30 30 -5 1235.43 1180.66

0 0 -3 124.30 118.40
60 0 -3 1402.34 1349.91
60 60 -3 2952.26 2847.83
30 0 -3 920.05 891.76
60 30 -3 1910.54 1836.46
30 30 -3 1339.32 1291.28
30 -30 -3 1874.14 1822.80
0 30 -3 512.26 484.98

30 60 -3 2362.15 2287.77
-30 30 -3 1017.58 969.52

a MINIMUM: ( θ1′, θ2′, â) ) (4.0, -4.0, 111.369)°; Emin (MP2) ) -134.829333 au;Emin (MP4) ) -134.887942 au.

Figure 2. The Hamiltonian matrix factorized into the G18 and G36

(dotted line) irreducible representations.

Φ(θ1,θ2,â) ) ∑
I
∑

J
∑
N

[CIJN
cc XN cosIθ1 cosJθ2 +

CIJN
cs XN cosIθ1 sinJθ2 + CIJN

sc XN sin Iθ1 cosJθ2 +

CIJN
ss XN sin Iθ1 sinJθ2] (6)

XN ) Hγâ exp(-γ2â2/2) (7)

γ )
A002

cc

B33 (0,0,0)
(8)
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Figure 1). With this origin, the selected geometries were (0°,
0°), (60°, 0°), (60°, 60°), (30°, 0°), (0°, 30°), (30°, 60°), (60°,
30°), (30°, 30°), (30°, -30°), and (-30°, 30°). Conformations
separated by 120° from this first set [i.e., (120°, 120°),... and
(120°, -120°),..,] were also included in the fitting. Five values
of the CNC angle around the CNC equilibrium value (â0), were
chosen for describing the variation of the energy with the
bending angle. These angle values wereâ ) 0°, 3°, 5°, -3°,
-5°. The relative energies with respect to the most stable
conformer were fitted to eq 2 using a least-squares algorithm
and the SPSS program.26 The 50 relative energy values of Table
1 were obtained from the fitted function. Table 2 shows the
41 expansion coefficients for this potential energy function.

In the most stable conformation, the methyl hydrogen atoms
no longer lie in the CNC plane (whereθ1′ ) 0° andθ2′ ) 0°),
but atθ2′ ) -4.0°. In the same way, the CNC angle was found
to be 111.369° at the equilibrium geometry. It is necessary to
remark thatθ1, θ2, andâ are the vibrational coordinates. The
termsθ1′ andθ2′ were essentially introduced in the input of the
ab initio calculations. Table 2 shows the expansion coefficients
of the potential energy surfaces. The minima of these surfaces,
V ) 0.0 cm-1, correspond to (θ1, θ2, â) ) (0°, 0°, 0°), which
is equivalent to (θ1′, θ2′, â) ) (4.0°, -4.0°, 0°).

Table 3 shows the variation of the DMA torsional barrier
(Vmax - Vmin)(â) and the effective barrier (Vsp - Vmin)(â) with
the bending coordinateâ. Vmin, Vsp, andVmax are the energies
of the structures (θ1, θ2, â) ) (0°, 0°, â), (θ1, θ2, â) ) (60°, 0°,
â) and (θ1, θ2, â) ) (60°, 60°, â), respectively. The value of
the barrier increases as the CNC angle decreases. The cos×

cos (A11â
cc ) and the sin× sin (A11â

ss ) terms of the potential, which
describe the interactions between the two methyl group torsions,
also depend on theâ coordinate. Figure 3 shows the variation
of the torsional barrier, (Vmax - Vmin)(â), and the effective
barrier, (Vspx - Vmin)(â), with â. The two curves in Figure 4
represent the variation ofA11â

cc andA11â
ss with â.

The kinetic parameters for the Hamiltonian were determined
with the numerical differentiation method described by Harth-
cock and Laane.27 For this purpose, the G matrix was calculated
numerically from the internal coordinates at the most stable
structure. The MP2/6-311G(d,p) values were: B1 ) B2 )
6.5459 cm-1, B3 ) 1.5911 cm-1, and B12 ) -1.0179 cm-1. In
addition, B12 ) B13 ) 0.0, as a result of the orthogonality of
the torsional and bending axes. The dependence of the kinetic
operators on the remaining vibrational coordinates was not taken

TABLE 2: Expansion Coefficients of the Potential Energy
Hypersurface (cm-1)

coefficient MP2/TZ MP4/TZ coefficient MP2/TZ MP4/TZ

A000
cc 1235.753 1198.354 A220

cc 1.791 1.622
A001

cc -36.035 -31.788 A221
cc -0.366 -0.354

A002
cc 9.030 8.882 A222

cc 0.025 0.022
A003

cc -0.134 -0.137 A223
cc 0.000 -0.001

A004
cc 0.001 0.004 A110

ss -5.187 -5.309
A100

cc -659.930 -640.494 A111
ss 12.889 12.665

A101
cc 23.619 22.225 A112

ss -0.586 -0.564
A102

cc 0.717 -0.714 A113
ss 0.011 0.005

A103
cc 0.015 0.015 A010

cs -42.672 -48.406
A110

cc 36.116 36.072 A011
cs 7.033 6.599

A111
cc -10.621 -10.157 A012

cs 0.176 0.180
A112

cc 0.398 0.395 A013
cs -0.003 -0.002

A113
cc -0.009 -0.013 A110

cs 5.953 6.506
A200

cc 20.851 19.648 A111
cs -0.546 -0.410

A201
cc -0.118 -0.042 A112

cs -0.066 -0.066
A202

cc 0.005 0.008 A113
cs -0.001 -0.002

A203
cc -0.001 -0.001 A210

cs -2.368 -2.664
A210

cc 2.857 3.255 A211
cs -0.425 -0.387

A211
cc 0.310 0.240 A212

cs 0.040 0.032
A212

cc -0.034 -0.031 A213
cs 0.000 0.001

A213
cc 0.002 0.003

TABLE 3: Variation of the Torsional Barrier (cm -1) with
the Bending Anglea

MP2/TZ MP4/TZ

â (VSP- Vmin) (Vmax- Vmin) (VSP- Vmin) (Vmax- Vmin)

-5 1394.6 3190.5 1344.2 3081.9
-3 1328.5 2944.3 1282.8 2847.3

0 1241.9 2628.3 1202.3 2549.0
3 1168.0 2366.3 1134.5 2304.3
5 1124.5 2216.2 1095.5 2165.1

a Vmax, Vsp, and Vmin are the energies corresponding to the values
(60°, 60°, â), (60°, 0°, â) and (0°, 0°, â) of (θ1, θ2, â), respectively.

Figure 3. The variation of the barrier maximum, (Vmax - Vmin) and
saddle points, (Vsp - Vmin) as a function of the∆(CNC) angle,â. â-
(equilibrium) ) 111.369°.

Figure 4. The sin(3θ1) sin(3θ2) and cos(3θ1) cos(3θ2) coupling terms
as a function of the displacements of the CNC bending angle from
equilibrium. ASS ) -5.309+ 12.665â - 0.564â2 + 0.005â3 and
ACC ) 36.072- 10.157â + 0.395â2 - 0.0013â3 (ASS and ACC in
cm-1; â in degrees).
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into account because our previous calculations14 showed that
they were approximately constant.

An accurate convergence of the lowest energy levels requires
at least 37× 37× 10 basis functions (37× 37 solutions of the
double rigid rotor and 10 harmonic oscillator solutions). This
basis length implies a Hamiltonian matrix of the order 13 690.
The symmetry conditions factorize this matrix into eight blocks
of dimensions: A1(910), A2(780), G(3120), E1(1560), E2(1320),
and E3(1440).

The Hamiltonian matrix was diagonalized using the Givens-
Householder algorithm. The energy levels were classified
according to their symmetries and the contribution of each
harmonic oscillator solution to the 3D wave functions. The
sixteen lowest levels are shown in Table 4. Each level splits
into four microstates (A, E, E′, and G); that is, nine components
corresponding to the nine equivalent wells on the potential
energy surface. The levels in Table 4 are labeled by using the
symmetry representations of the G18 r-NRG and the vibrational
quantum numbersV and V′ (for the torsions) andV′′ (for the
bending). The wave functions of theV′′ ) 0 levels depend
largely on the lowest single harmonic oscillator solution,X0.
The most important contributions to theV′′ ) 1 wave functions
areX0 andX1.Tables 5 and 6 show the frequencies corresponding
to the cold bands (torsional transitions connectingV′′ ) 0 levels)
and the hot bands (torsional transitions connectingV′′ ) 1
levels). Table 6 also gives the bending fundamental frequencies.

Assignments and Discussion

The frequencies of the cold bands, obtained in these 3D
calculations (Table 5) can be compared with those determined
in our first paper14 using a 2D model at the same level of
calculation. It is clear that the introduction of the third degree
of freedom not only displaces the whole spectrum to higher
wavenumbers, but it modifies slightly the relative positions of
the transitions. In particular, the assignments are not changed.
The observed displacements of the bands arise from the
difference in the meaning of coordinates in the two models.

To understand this difference it is necessary to recognize that
the 2D potential energy function cannot be represented by a
planar surface corresponding to a single value ofâ on the 3D
hypersurface. In the 3D model, the torsional parameters depend
explicitly on â. In the 2D model, they depend parametrically
on â, because the remaining 3N-6-2 internal coordinates are
optimized. In particular, the CNC angle changes from 111.4
to 116.1° with the torsion. When the geometry is optimized,
the CNC angle adjusts to minimize the interactions between
the methyl groups. The relaxation of the bending coordinate
decreases the torsional barrier and partially takes into account
the potential interactions of the torsion with the bending.

It is impossible to compare the barriers obtained in the 2D
and 3D models. In the 3D case, the barrier (Vmax - Vmin)(â)
and the effective barrier (Vsp - Vmin)(â) are functions ofâ

TABLE 4: Dimethylamine Energy Levelsa

v V′ V′′ MP4/TZ MP2/TZ V V′ V′′ MP2/TZ MP4/TZ

0 0 0 A1 447.19 442.54 0 0 1 A1 854.45 852.34
G 447.19 442.40 G 854.45 852.34
E1 447.19 442.54 E1 854.45 852.34
E3 447.19 442.54 E3 854.45 852.34

1 0 0 A2 667.37 659.40 1 0 1 A2 1071.69 1065.77
G 667.37 659.40 G 1071.66 1065.73
E2 667.37 659.40 E2 1071.64 1065.69
E3 667.37 659.40 E3 1071.64 1065.69

0 1 0 A1 705.31 697.98 0 1 1 A1 1108.87 1107.05
G 705.31 697.97 G 1108.82 1107.05
E1 705.31 697.97 E1 1108.76 1106.97
E3 705.31 697.97 E3 1108.76 1106.97

2 0 0 A1 885.01 873.90 2 0 1 A1 1280.16 1294.08
G 885.02 873.91 G 1280.86 1294.81
E1 885.04 873.93 E1 1281.64 1295.23
E3 885.04 873.93 E3 1281.64 1295.23

1 1 0 A2 913.70 902.75 1 1 1 A2 1321.56 1311.61
G 913.72 902.77 G 1321.83 1311.67
E2 913.74 902.80 E2 1322.16 1311.76
E3 913.74 902.80 E3 1322.16 1311.76

0 2 0 A1 959.65 949.75 0 2 1 A1 1361.91 1354.90
G 959.66 949.76 G 1361.92 1354.89
E1 959.67 949.77 E1 1361.94 1354.89
E3 959.67 949.77 E3 1361.94 1354.89

3 0 0 A2 1099.10 1085.46
G 1099.00 1085.35
E2 1098.90 1085.24
E3 1098.90 1085.24

2 1 0 A1 1117.51 1100.46
G 1117.30 1100.19
E1 1117.10 1099.92
E3 1117.10 1099.92

1 2 0 A2 1156.18 1142.50
G 1156.02 1142.31
E2 1155.86 1142.12
E3 1155.86 1142.12

0 3 0 A1 1209.11 1196.76
G 1209.08 1196.73
E1 1209.05 1196.69
E3 1209.05 1196.70

a In cm-1.
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(Figure 3). In contrast, in the 2D model, the barriers are constant
(2412.7 and 1228.4 cm-1), and the conformations corresponding
to the maximum energy, the saddle-point, and minimum energy,
which establish the barrier heights, exhibit different CNC angles.
The 2D model barrier, however, may be compared with the
average of the 3D model barrier extended to include the most
probable values ofâ for each pair of values of the torsional
angles. This average was larger than the barrier height of the
2D model barrier height and explains the displacement of the
spectra.

At first sight, the 2D model barrier seems to be better than
the 3D one. Indeed, the third coordinate displaces the frequen-
cies in the wrong direction because the 2D model yields
frequencies14 that are too high. However, an enlargement of
molecular basis set displaces the spectrum to lower wavenum-
bers. The introduction of the CNC bending coordinate and the
basis set improvement have opposite effects as was also
observed in DME.17,18 Both DMA and DME analyses suggest

that the electronic and nuclear calculations have to be improved
simultaneously.

As expected from the G18 r-NRG structure, each state splits
into four microstates that transform according to the A, E, E′,
and G irreducible representations. Both models (2D and 3D)
predict a splitting of 0.1 cm-1. The G component14 is regarded
as the center of the bands.

The fundamental frequencies of theυ12, υ24 andυ11 modes
were determined to be 255.43, 216.86, and 409.8 cm-1 [MP4/
6-311G(d,p)] at 0.9, 2.5, and 26.8 cm-1 from the experimental
values,1 respectively. The 3D model accurately reproduces the
torsional band positions. It is not good enough, however, to
predict the CNC bending frequencies, but a very good improve-
ment in the relative positions of the bands of theυ12 and υ24

modes is observed. The difference between the two funda-
mentals has been evaluated to be 38.58 cm-1 [MP4/6-311G-
(d,p)] and 37.94 cm-1 [MP2/6-311G(d,p)], which is in good
agreement with the experimental data (36.9 cm-1). The 2D
model14 predicts a difference of 31 cm-1.

The gap between theυ12 andυ24 fundamentals depends on
the torsional interaction terms of the potential, as well as on
the kinetic interaction term, B12. At the most stable geometry,
there is no kinetic interaction between the torsion and the
bending modes because their displacement vectors are perpen-
dicular. The value of B12 thus does not depend on the presence
of the third coordinate. Thus, the differences between calculated
frequencies in 2D and 3D do not depend on the kinetic terms
but on the potential energy terms. The largest potential
contribution arises from theA11

ss coefficients, which are con-
stant in the 2D model and a function ofâ:

in the 3D model. As it was observed in DME,17,18 accurate
calculations of the As1s1 function improve the quality of the
DMA fundamental frequencies. In addition, theυ12 frequencies
depend on the potential energy function for whichθ1 ) -θ2,
whereas theυ24 ones depend on that whereθ1 ) θ2. These
steric hindrances between the two methyl hydrogen atoms may
be expected to produce opposite effects in theυ12 and υ24

frequencies (gearing effects), and therefore the present calcula-
tions improve the gap between fundamentals.

The frequencies of the fundamental band, and first, second,
and third sequences of theυ12 mode were determined to be
255.43 cm-1, and 251.79, 246.97, and 240.38 cm-1, respectively,
which is in good agreement with the experimental data1 (256.3
cm-1, and 250.8, 245.3, and 239.8 cm-1, respectively). The
differences between calculated and experimentalυ12 data
obtained using the 3D model are similar to those obtained in
the 2D model.14 The calculated fundamental and first sequence
of the υ24 bands were 216.86 and 214.51 cm-1, which is in
good agreement with the experimental data1 (219.4 and 213.0
cm-1, respectively).

Table 6 gives the vibrational data for the two first torsional
hot bands. The present calculations are in disagreement with
the assignments of Durig et al.1 The differences could arise
from the inadequacy of the 3D model or from the experimental
data that were deduced from the 2D model. The exact
determination of these bands would probably require to consider
the effect of the NH wagging mode as observed in methyl-
amine.21 In DMA, a large interaction may be expected, the
wagging angle (γ) is, indeed, seen to vary with the bending
angle: atθ1 ) θ2 ) 60°, we haveγ ) 60.996°, 57.092°, and
52.522°, for â ) -5°, 0°, and+5°, respectively.

TABLE 5: Cold Band Positions for Dimethylamine (cm-1)

V V′V′′ f v v′ v′′ MP2/TZ MP4/TZ obs calc- obs

gearing mode
0 0 0f 0 1 0 A1 f A1 258.12 255.44

G f G 258.12 255.43 256.3 -0.9
E1 f E1 258.12 255.43
E3 f E3 258.12 255.43

0 1 0f 0 2 0 A1 f A1 254.34 251.77
G f G 254.35 251.79 250.8 +1.0
E1 f E1 254.36 251.80
E3 f E3 254.36 251.80

0 2 0f 0 3 0 A1 f A1 249.46 247.01
G f G 249.42 246.97 245.3 +1.7
E1 f E1 249.38 246.92
E3 f E3 249.38 246.92

0 3 0f 0 4 0 A1 f A1 243.46 241.16
G f G 243.35 240.38 239.8 +0.6
E1 f E1 243.32 240.36
E3 f E3 243.17 239.35

1 0 0f 1 1 0 A2 f A2 246.33 243.35
G f G 246.35 243.37 239.8 +3.6
E2 f E2 246.37 243.40
E2 f E3 246.37 243.40

antigearing mode
0 0 0f 1 0 0 A1 f A2 220.18 216.86

G f G 220.18 216.86 219.4 -2.5
E1 f E2 220.18 216.86
E3 f E3 220.18 216.86

1 0 0f 2 1 0 A2 f A1 217.64 214.50
G f G 217.65 214.51 213.0 +1.6
E2 f E1 217.67 214.53
E3 f E3 217.67 214.53

TABLE 6: Bending Fundamental and Torsional Hot Band
Positions for Dimethylamine (cm-1)

V V′ V′′ f V V′ V′′ MP2/TZ MP4/TZ obs calc- obs

0 0 0f 0 0 1 A1 f A1 407.26 409.80
G f G 407.26 409.80 383 +26.8
E1 f E1 407.26 409.80
E3 f E3 407.26 409.80

gearing mode
0 0 1f 0 1 1 A1 f A1 254.42 254.71

G f G 254.37 254.71 227.6 +27.1
E1 f E1 254.31 254.63
E3 f E3 254.31 254.63

antigearing mode
0 0 1f 1 0 1 A1 f A2 217.24 213.43

G f G 217.24 213.39
E1 f E2 217.19 213.35
E3 f E3 217.19 213.35

A11
ss ) A110

ss + A111
ss â + A112

ss â2 + A11
ss â3
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Finally, it may be added that Fermi interactions between the
bending and the torsional modes have not been observed. The
significant improvement of the 3D model relative to the 2D
model results from the proper description of the potential
torsional parameters that depends on the bending angleâ.
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